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Abstract—Given a set of k networks, possibly with different
sizes and no overlaps in nodes or links, how can we quickly assess
similarity between them? Analogously, are there a set of social
theories which, when represented by a small number of descrip-
tive, numerical features, effectively serve as a “signature” for the
network? Having such signatures will enable a wealth of graph
mining and social network analysis tasks, including clustering,
outlier detection, visualization, etc. We propose a novel, effective,
and scalable method for solving the above problem. Our approach
has the following desirable properties: (a) It is supported by a
set of social theories. (b) It gives similarity scores that are size-
invariant. (c) It is scalable, being linear on the number of links for
graph signature extraction. We present extensive experiments on
numerous synthetic and real networks from disparate domains,
and show how we outperform baseline competitors. We also show
how our approach enables several mining tasks such as clustering,
visualization, discontinuity detection, network transfer learning,
and re-identification across networks.

I. INTRODUCTION

We address the problem of network similarity. Specifically,
given a set of k networks of potentially different sizes and
without any assumptions on overlapping nodes or edges, how
can we efficiently provide a meaningful measure of structural
similarity (or distance)? For example, how structurally similar
are the ASONAM and ICWSM co-authorship networks? How
does their structural similarity compare with the similarity
between the ASONAM and WSDM co-authorship networks?
Such measures are extremely useful for numerous social
network analysis and graph mining tasks. One such task is
clustering: given a set of networks, find groups of similar ones;
conversely, find anomalies or discontinuities – i.e., networks
that stand out from the rest. Transfer learning is another
application. If networks G1 and G2 are similar, we can transfer
conclusions from one to the other to perform across-network
classification with better predictive accuracy.

When considering the problem of network structural simi-
larity, we need to make some choices. Should the comparison
be at the local (node) level, at the global (network) level,
or both? Should the comparison be based on the similarities
(or distances) of the adjacency matrices or similarities (or
distances) of structural features, or both? Should the approach
be interpretable or is a black-box approach okay? Must the
approach be scalable? Can the approach be readily extended
to accommodate non-structural features? Clearly, these choices
are not independent of each other. For example, comparisons
at the local level tend to be more interpretable and scalable.

We present an approach, NETSIMILE, that has the fol-
lowing seven characteristics. (1) It can compare networks at
the local (node and neighborhood) level. (2) It uses structural
features supported by social theories. (3) It is scalable. (4) It

is interpretable. (5) It is size-independent. (6) It can readily
be extended to accommodate global-level features and non-
structural features. (7) Its similarity values satisfy the Identity,
Symmetry, and Divergence properties.

The core of NETSIMILE is a careful extraction, aggrega-
tion, and evaluation of structural features from nodes and their
local neighborhoods. For every network G, we derive a small
number of numerical features, which incorporate various social
theories and capture the topology of the network as moments
of distributions over its local structural features. The similarity
score between two networks then is just the similarity of their
“signature” vectors. Once we have the similarity function,
we can do a wealth of interesting tasks, including clustering,
visualization, anomaly detection, etc.

NETSIMILE incorporates four social theories when ex-
tracting the “signature” vector of a network: Social Capital,
Structural Hole, Balance, and Social Exchange. These theories,
respectively, capture connectivity of nodes and their neigh-
borhoods, control of information flow, transitivity among the
nodes, and reciprocity among the nodes. We selected these
social theories because they are purely structural (as supposed
say homophily which relies on a non-structural characteristic).
Also, these theories can be applied to a wide range of networks
as opposed to just social networks. Contractor, Wasserman, and
Faust [1] provide a list of social theories.

Our empirical study includes experiments on more than
30 real-world networks and various synthetic networks gen-
erated by four different graph generators (namely, Erdös-
Rényi, Forest Fire, Watts-Strogatz, and Barabási Preferential
Attachment). We compare NETSIMILE with two baselines. The
first baseline extracts frequent subgraphs from the given graphs
and performs pairwise comparison on the intersection of the
two sets of frequent patterns. The second baseline computes
the k largest eigenvalues of each network’s adjacency matrix
and measures the distance between them.

Our experiments provide answers to the following ques-
tions: How do the various methods compare w.r.t. their similar-
ity scores? Are their results intuitive (e.g., is a social network
more similar to another social network than to a technological
network)? How do they compare to null models? Are the
methods just measuring the sizes of the networks in their
comparisons? How scalable are the various methods?

The contributions of our work are:

• Novelty: By using moments of distribution as aggrega-
tors, NETSIMILE generates a single “signature” vector
for each graph based on the local and neighborhood
features of its nodes. Our features incorporate four



social theories that are endogenous to the network and
are applicable to more than just social networks.

• Effectiveness: NETSIMILE produces similarity / dis-
tance measures that are size-independent, intuitive,
and interpretable. The similarity values satisfy the
identity, symmetry, and divergence properties.

• Scalability: The runtime complexity for generating
NETSIMILE’s “signature” vectors is linear on the
number of edges.

• Applicability: NETSIMILE’s “signature” vectors are
useful in many social network analysis and graph
mining tasks.

The paper is organized into the following sections: Pro-
posed Method, Experiments, Related Work, and Conclusions.

II. PROPOSED METHOD

NETSIMILE has three steps: (1) feature extraction, (2)
feature aggregation, and (3) signature comparison.

Feature extraction. Four social theories guide NETSIM-
ILE’s feature extraction: Coleman’s Social Capital [2], Burt’s
Structural Holes [3], Heider’s Balance [4], and Homan’s Social
Exchange [5]. We chose these social theories because they are
purely structural and endogenous to the network (as opposed
to, for example, Homophily which relies on a non-structural
characteristic). Based on the aforementioned four theories,
NETSIMILE extracts a small set of structural features for
each node based on its local and egonet-based features.1 We
briefly describe the social theories used in NETSIMILE and the
structural features associated with them next.

Theory of Social Capital operates at the node level and
measures the connectivity of nodes and their neighborhoods.
NETSIMILE captures Social Capital via these two features:

• di = |N(i)|: number of neighbors (i.e. degree) of node
i; N(i) denotes the set of neighbors for node i.

• d̄N(i): average degree of N(i), computed as
1
di

∑
∀j∈N(i) dj .

Theory of Structural Hole operates at the neighborhood
level and measures control of information flow. NETSIMILE
captures Structural Hole by extracting this feature:

• |Eego(i)|: number of edges in node i’s egonet; ego(i)
returns node i’s egonet.

The degree of node i captured as part of Social Capital
and the clustering-coefficient based features captured as part
of Balance (see below) also serve to capture structural hole.

Theory of Balance operates at the triadic level and mea-
sures the transitivity among the nodes. NETSIMILE captures
Balance by extracting these two features:

• ci: clustering coefficient of node i, defined as the
number of triangles connected to node i over the
number of connected triples centered on node i.

• c̄N(i): average clustering coefficient of N(i), node i’s
neighbors, calculated as 1

di

∑
∀j∈N(i) cj .

1A node’s egonet is the induced subgraph of its neighboring nodes.

Theory of Social Exchange operates at the dyadic level and
measures reciprocity among the nodes. NETSIMILE captures
Social Exchange at the egonet level via these two features:

• |Eo
ego(i)|: number of outgoing edges from ego(i).

• |N(ego(i))|: number of neighbors of ego(i).

Note that NETSIMILE is flexible enough to incorporate
additional features, including global (network) level features
and non-structural features, such as attributes on nodes. (See
Remark 2 at the end of this section for a discussion on local-
vs. global-level network comparison.) We choose the above
local and egonet-based features for three reasons. First, they
incorporate the pertinent local endogenous social theories (So-
cial Capital, Structural Holes, Balance, and Social Exchange).
Second, they satisfy our constraints in terms of effectiveness
(namely, size-independence, intuitiveness, and interpretability)
and scalability (see Section III). Third, empirically we observe
that the above features are sufficient for measuring similarity
across networks from various domains (see Section III).

Feature aggregation. After the feature extraction step,
NETSIMILE has extracted a node × feature matrix, FGj

,
for each graph Gj ∈ {G1, G2, · · · , Gk}. We can measure
similarity between graphs by comparing their feature matrices
(see discussion below under Remark 1). However, we dis-
covered that generating a single “signature” vector for each
graph produces more efficient and effective comparisons. To
this end, NETSIMILE uses the following five aggregators on
each feature (i.e., on each column of FGj

): median, mean,
standard deviation, skewness, and kurtosis. Note that the latter
four of the five aggregators are moments of distribution of
each feature. In other words, NETSIMILE feature aggregation
captures the movements of distribution of the social theories
that each feature represents. NETSIMILE is flexible enough to
use other aggregators as well, though we found these five to
be sufficient for the task of network comparison and satisfy
our effectiveness and scalability constraints (see Section III).

Comparison. After the feature aggregation step, NET-
SIMILE has produced a “signature” vector ~sGj

for every
graph Gj ∈ {G1, G2, · · · , Gk}. NETSIMILE now has the
whole arsenal of clustering techniques and pairwise similarity
/ distance functions at its disposal. Amongst the collection of
pairwise similarity / distance functions, we found Canberra
Distance (dCan(P,Q) =

∑d
i=1

|Pi−Qi|
Pi+Qi

) to be very discrimi-
native (a good property for a distance measure). This is because
Canberra Distance is sensitive to small changes near zero;
and it normalizes the absolute difference of the individual
comparisons (see discussion in Section III).

Computational complexity. Let k = number of graphs
given to NETSIMILE (i.e., k = |{G1, · · · , Gk}|), nj = the
number of nodes in Gj , mj = the number of edges in Gj , f
= number of structural features extracted, and r = number of
aggregators used. Note that f , r, and k are small integers (in
the teens).

Lemma 1: The runtime complexity for generating NET-
SIMILE’s “signature” vectors is linear on the number of edges
in {G1, · · · , Gk}, and specifically

O(

k∑
j=1

(fnj + fnj log(nj))) (1)



where f � nj � mj .

Proof: To generate NETSIMILE’s “signature” vectors,
features need to be extracted and then aggregated.

Feature Extraction: Recall that NETSIMILE is computing
local and neighborhood-based structural features. As proved
in [6], computation of neighborhood-based features is expected
to take O(nj) for real-world graphs. Therefore to compute f
neighborhood-based features on a graph Gj , it takes O(fnj).

Feature Aggregation: This is O(fnj log(nj)) for each
graph Gj . Recall that NETSIMILE’s aggregators are median,
mean, standard deviation, skewness, and kurtosis. The latter
four can be computed in one-pass through the f feature
values. The most expensive computation is the median which
cannot be done in one-pass. However, it can be computed
in O(nlog(n) + n) for n numbers. Basically, one needs
O(nlog(n)) to sort the n numbers and then select the median
with O(n) operations.

Properties of NETSIMILE. NETSIMILE satisfies the prop-
erties of Identity, Symmetry and Divergence. Identity holds
because for a given network G1 and its “signature” vector
~sG1 , ~sG1 − ~sG1 = 0. Symmetry holds because for two
networks G1 and G2 and their “signature” vectors ~sG1 and
~sG2 , |~sG1 − ~sG2 | = |~sG2 − ~sG1 |. We show that NETSIMILE
satisfies the Divergence property via an experiment. Figure 1
shows the NETSIMILE similarity scores between various net-
works (described in Section III-A) and their rewired versions.
NETSIMILE similarity score (i.e. 1 minus the NETSIMILE
Scaled Canberra Distance) is in [0, 1], with 0 meaning no
similarity at all and 1 meaning identical graphs. We rewire
a graph by randomly reassigning a number of its edges. The
rewiring parameter, c ∈ [0, 1], determines the fraction of edges
rewired. Edges are reassigned in a way that preserves the
expected degree of each node in the graph. When c is 0, no
rewiring takes place (i.e., the original and rewired graphs are
identical) and as expected the NETSIMILE score is 1 between
them. When c is 1, the rewired graph is the least similar to the
original graph (because all the edges in the original graph have
been randomly reassigned). As expected, comparing an Erdös-
Rényi graph to its rewired version does not significantly change
the NETSIMILE score (see the line with the black circles in
Figure 1). However, for real-world graphs (like co-authorship
networks and autonomous systems networks) as the rewiring
parameter increases, the NETSIMILE score decreases.

Remark 1: Network comparison through statistical
hypothesis testing. Given the node×feature matrices of two
graphs, FG1 and FG2 , NETSIMILE can use statistical hypothe-
sis testing to see if the two graphs are samples from the same
underlying distribution. Specifically, NETSIMILE normalizes
each column (i.e. feature) in FG1 and FG2 by its L2 norm.
Then, NETSIMILE does pairwise hypothesis testing across
the features of the graphs. For example, it does hypothesis
testing between the degree columns in G1 and G2; between the
clustering coefficient columns in G1 and G2; and so on. This
process produces seven p-values (corresponding to the seven
features extracted by NETSIMILE). To decide whether the two
graphs are from the same underlying distribution, NETSIMILE
uses the maximum p-value. (The average of the p-values did
not produce better results.)

For the statistical hypothesis tests, NETSIMILE can use
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Fig. 1. NETSIMILE similarity scores for various graphs and their rewired
versions. As the rewiring parameter increases, the NETSIMILE similarity
score decreases in real-world networks (e.g., co-authorship networks from
arXiv, DBLP, and IMDB and technological networks from Oregon AS).
Unsurprisingly, increasing the rewiring parameter in an Erdös-Rényi graph
(black circles) does not have the same pattern.

any test available. We tried the Mann-Whitney (MW) Test [7]
and the Kolmogorov-Smirnov (KS) Test [8]. The MW Test
is nonparametric. It assumes two samples are independent
and measures whether the two samples of observations have
equally large values. The KS Test is also nonparametric. We
used the two-sample KS Test which compares two samples
w.r.t. the location and shape of the empirical cumulative
distribution functions of the two samples. We found that in
both MW and KS tests the maximum p-values were 0 for the
overwhelming majority of the graph pairs, which indicated to
us that neither test generated enough discriminative power to
effectively capture differences between two graphs (though the
MW Test was more discriminative than KS).

Remark 2: Network comparison at the local- vs. global-
level. Whether one prefers local-level network similarity to
global-level network similarity depends on the application for
which the similarity is being used. NETSIMILE is designed
such that it can take either local-level or global-level features.
Here, we emphasis NETSIMILE’s local-level network similar-
ity. The advantages of local-level comparison is that node-
level and egonet-level features are often more interpretable
than global features – e.g., consider average degree of a
node vs. the number of distinct eigenvalues of the adjacency
matrix. Also, local-level features are computationally less
expensive than global-level features – e.g., consider clustering
coefficient of a node vs. diameter of the graph. Moreover,
looking at local-level features that incorporate social theories
answers the question: “are the given two networks from similar
linking models?” For example, consider the Facebook and
Google+ social networks. Even though Google+ is a smaller
network than Facebook, are its users linking in a similar
way to the users of the Facebook network? Is the smaller
Google+ network following a similar underlying model as the
lager Facebook network? Local-level features can capture any
similarity present in the linking models of the two networks,
but global-level features cannot.

III. EXPERIMENTS

This section is organized as follows. First, we outline the
real and synthetic datasets used in our experiments, as well
as our experimental setup. Second, we describe two baseline



Network |V| |E| k Net c c̄ |LCC| #CC
ar

X
iv

a-AstroPh 18,772 396,160 42.21 0.318 0.677 17,903 290
a-CondMat 23,133 186,936 16.16 0.264 0.706 21,363 567

a-GrQc 5,242 28,980 11.06 0.630 0.687 4,158 355
a-HepPh 12,008 237,010 39.48 0.659 0.698 11,204 278
a-HepTh 9,877 51,971 10.52 0.284 0.600 8,638 429

D
B

L
P-

C

d-vldb 1,306 3,224 4.94 0.597 0.870 769 112
d-sigmod 1,545 4,191 5.43 0.601 0.856 1,092 116
d-cikm 2,367 4,388 3.71 0.560 0.873 890 361

d-sigkdd 1,529 3,158 4.13 0.505 0.879 743 189
d-icdm 1,651 2,883 3.49 0.518 0.887 458 281
d-sdm 915 1,501 3.28 0.540 0.870 243 165

D
B

L
P-

Y

d-05 39,357 79,114 4.02 0.415 0.642 29,458 3,229
d-06 44,982 94,274 4.19 0.379 0.632 35,223 3,140
d-07 47,465 103,957 4.38 0.373 0.628 38,048 3,078
d-08 47,350 107,643 4.55 0.378 0.612 38,979 2,849
d-09 45,173 102,072 4.52 0.331 0.595 36,767 2,920

IM
D

b

i-05 13,805 130,295 18.88 0.506 0.774 13,075 258
i-06 14,228 142,955 20.09 0.480 0.760 13,458 269
i-07 13,989 133,930 19.15 0.476 0.757 13,091 256
i-08 14,055 132,007 18.78 0.469 0.750 13,313 273
i-09 14,372 128,926 17.94 0.442 0.728 13,601 277

Q
ue

ry
L

og

ql-1 138,976 1,102,606 15.87 0.055 0.599 132,012 3,238
ql-2 108,420 876,517 16.17 0.055 0.594 103,095 2,482
ql-3 89,406 707,579 15.83 0.053 0.588 85,246 1,941
ql-4 75,838 582,703 15.37 0.051 0.583 72,396 1,600
ql-5 42,946 253,469 11.80 0.047 0.573 40,691 1,027

O
re

go
n

A
S o-1 10,900 31,181 5.72 0.039 0.501 10,900 1

o-2 11,019 31,762 5.76 0.040 0.495 11,019 1
o-3 11,113 31,435 5.66 0.034 0.490 11,113 1
o-4 11,260 31,304 5.56 0.032 0.487 11,260 1
o-5 11,461 32,731 5.71 0.037 0.494 11,461 1

TABLE I. REAL NETWORKS: #NODES, #EDGES, AVG DEGREE,
NETWORK CLUSTERING COEFFICIENT (TRANSITIVITY), AVG NODE
CLUSTERING COEFFICIENT, #NODES IN THE LARGEST CONNECTED

COMPONENT, #CONNECTED COMPONENTS.

methods. Third, we present results that answer the following
questions: How do the different approaches compare? Is there
a particular method which clearly outperforms the others? If
yes, to which extent? How can we interpret the results? Is
NETSIMILE affected by the sizes of the networks? How do the
proposed methods scale? How well does NETSIMILE perform
in various graph mining applications?

A. Data and Experimental Setup

Real Networks. Table I lists the basic statistics of the
real networks used in our experiments. Here is a short de-
scription. arXiv (http://arxiv.org) has 5 co-authorship networks
corresponding to the following fields: Astro Physics, Con-
densed Matter, General Relativity, High Energy Physics and
High Energy Physics Theory. DBLP-C (http://dblp.uni-trier.de)
has 6 co-authorship networks from VLDB, SIGKDD, CIKM,
ICDM, SIGMOD and WWW conferences, each spanning
over 5 years (2005-2009). DBLP-Y has 5 co-authorship net-
works, each corresponding to one of the years from 2005
to 2009 and consisting of data from 31 conferences. IMDb
(http://www.imdb.com) has 5 collaboration networks for movies
issued from 2005 to 2009. Each node represents a person
who took part in the movie (i.e., cast and crew). Edges
connect people who collaborated on a movie. QueryLog
(http://www.gregsadetsky.com/aol-data) has 5 word co-occurrence
networks built from a query-log of approximately 20 millions
web-search queries submitted by 650,000 users over 3 months.
Oregon AS (http://snap.stanford.edu/data/) has 5 Autonomous

Systems (AS) routing graphs between March 31st and May
26th 2001.

Synthetic Networks. We also produced several synthetic
networks by using the following generators from the igraph
library (http://igraph.sourceforge.net). Barabási-Albert [9]:
With a non-assortative version of the generator, we created
graphs with 1K, 10K, and 100K nodes, adding 4 edges in each
iteration. Forest-Fire [10]: We generated graphs of size 1K,
10K, and 100K nodes, with 20% forward burning probability,
40% backward burning probability, and 4 ambassador vertices.
Erdös-Rényi [11]: We used the G(n,m) generator, where n
is the number of nodes and m the number of edges, and
produced graphs G(n, 2n) with 1K, 10K, and 100K nodes.
Watts-Strogatz [12]: We built graphs of size 200, 2K, and
20K nodes by setting the lattice dimension to 1, the degree to
4, and the rewiring probability to 0.3.

For each generator and for each node-set size, we built five
networks. Our results report the average values obtained across
the five networks per generator and node-set size.

Experimental Setup. We implemented our approach in
C++ and Matlab, making use of the GNU Statistic Libraries
and igraph. The code was run on a server equipped with 8
Intel Xeon processors at 3.0GHz, with 16GB of RAM, and
running CentOS 5.2 Linux.

B. Baseline Methods

We compare NETSIMILE with (a) Frequent Subgraph Min-
ing and (b) Eigenvalues Extraction. We chose these two meth-
ods because they are intuitive and widely applicable. Many
methods discussed in Section IV are application-dependent.

FSM (Frequent Subgraph Mining): Given two graphs,
we take the intersection of their frequent pattern-sets and
build two vectors (one per graph) of relative supports of
their patterns [13]. We compare these FSM vectors with
NETSIMILE’s “signature” vectors using Canberra Distance. A
clear drawback of FSM is its lack of scalability.

EIG (Eigenvalues Extraction): This is an intuitive mea-
sure of network similarity that is based on global feature ex-
traction (as opposed to the local feature extraction of NETSIM-
ILE). For each graph, we compute the k largest eigenvalues2 of
its adjacency matrix, and thus we obtain a vector of size k per
graph. Then, we use the Canberra Distance in order to compare
these vectors and find the pairwise similarities between the
graphs. A disadvantage of EIG is that it is size dependent:
larger networks - or ones with larger LCC (Largest Connected
Component) - have higher eigenvalues. Thus, EIG will lead
to higher similarity between networks with comparable sizes.
Moreover, there is no global upper-bound for eigenvalues,
making distance values hard to compare.

C. Comparative Results

For each method (NETSIMILE, FSM, and EIG), after
extracting features from the graphs and obtaining one (ag-
gregated) feature vector per graph, we apply the Canberra

2We tried a few values for k and saw no significant changes around 10; so
we selected k = 10.
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Fig. 2. Illustration of NETSIMILE’s success: Scaled Canberra Distance scores (∈ [0, 1]) between the DBLP-C networks by NETSIMILE (a), FSM (b), and
EIG (c). d-sigkdd, d-icdm, and d-sdm are data mining conferences. d-vldb and d-sigmod are databases conference; d-cikm is an information and knowledge
management conference. NETSIMILE has more discriminative power than the baseline methods.

Distance. For brevity, we do not report comparative results
on other similarity/distance measures that we tried.

Figure 2 depicts the results of a set of experiments involv-
ing the scaled Canberra Distance (where each value is in [0,1])
on the DBLP-C datasets. The columns in Figure 2 correspond
to the heatmaps we obtained from NETSIMILE, FSM and EIG,
respectively. Inspecting Figures 2, we observe that the results
of NETSIMILE are similar to FSM. For instance, according
to both, the d-vldb network is similar to d-sigmod (both are
databases conferences), but d-vldb is not so similar to d-sdm
(a data mining conference). However, the FSM results are
much less discriminative. Also, we observe that the results
from EIG differ from the ones from NETSIMILE and FSM.
According to EIG, d-vldb has no significant differences with
d-sigmod, d-cikm, and d-sigkdd; while NETSIMILE and FSM
found differences. Since there is no global normalization for
the EIG values,3 global comparisons of a set of networks are
harder to interpret with EIG than with NETSIMILE or FSM.

We also measure the entropy in feature vectors generated
by NETSIMILE, FSM, and EIG on the DBLP-C co-authorship
networks. As Figure 3 shows, NETSIMILE’s feature vectors
have higher entropy than FSM’s or EIG’s. Higher entropy
means more uncertainty (i.e., we need more bits to store the
desired information). So, NETSIMILE’s feature vectors capture
the nuances (i.e. uncertainty) in the graphs bettern than FSM
or EIG, which then leads to more discriminative power when
comparing graphs.

D. Interpretability of Results

To make sense of our results, we exploit the background
knowledge about the networks used in our experiments. In the
real networks, we have three sets of collaboration networks
(DBLP-C, DBLP-Y and IMDb), one technological network
(Oregon AS), and a word co-occurrence network (Query Log).
In addition, we have different synthetic networks generated
by various commonly used models. One would expect these
networks to be “clustered” by their types. This idea was
inspired by the considerations found in [14], where a large
set of networks of different types are analyzed, together with
their typical global and local features.

3It is possible to do pairwise normalization by the number of nodes, but
this is not general for any set of networks.
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Fig. 3. [Higher is better.] Entropy of feature vectors generated by NETSIM-
ILE, FSM, and EIG on the DBLP-C co-authorship networks. NETSIMILE’s
feature vectors have higher entropy than FSM’s or EIG’s, implying that they
are capturing the nuances in the graphs better than FSM or EIG.

Figure 4(a) presents the dendrogram of all of our networks
built by hierarchical agglomerative clustering with unweighted
average linking and the Canberra Distance and using NET-
SIMILE’s graph “signature” vectors. The network names are
colored by data set. As evident in Figure 4(a), there is a
clear distinction between the clusters. The collaboration net-
works appear all together, along with the forest fire synthetic
networks. The Oregon AS forms a cluster that only at the
height of 0.45 joins with the Query Log. The Erdös-Rényi and
Watts-Strogatz form a separate cluster. This, in turns, reflects
our aforementioned intuition about following our background
knowledge of the data.

Figure 4(b) shows the dendrogram for the above experi-
ment (hierarchical agglomerative clustering with unweighted
average linking and the Canberra Distance) for graph vectors
generated by EIG. This figure clearly shows a different picture,
where the networks are grouped differently (see how the
distribution of the colors is mixed). For example, in the
leftmost cluster, two collaboration networks from arXiv are
put together with four Query Log networks, while the missing
Query Log network is placed together with the Oregon AS
networks. The EIG results are not intuitive, thus making EIG
not suitable for interpreting graph-similarity results.

Another way to visualize the similarity of graphs is to
project NETSIMILE’s graph× feature matrix into its princi-
pal component space through Singular Value Decomposition
(SVD). Due to brevity, we have omitted these results.
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Fig. 4. NETSIMILE achieves cleaner network separation: Hierarchical dendrograms of all network based on (a) NETSIMILE with Canberra Distance, and (b)
EIG with Canberra Distance. Network names are colored by data set. Homogeneity in colors (NETSIMILE’s dendrogram) indicates better and more intuitive
groupings (than EIG’s dendrogram).

E. Similarity of Networks with Different Sizes

One question that may arise regarding NETSIMILE is
whether its results are affected by the differences in sizes or
other basic statistics of the two networks being compared. We
do not want the size to play an important role in our solutions
given that our interpretation of the question “are two networks
similar?” leads to the question “do the two networks follow
the same (or similar) underlying linking model?”. To answer
these questions, we compared the relationships between the
NETSIMILE with Canberra Distance and some basic statistics
of our real and synthetic networks. Specifically, we compared
NETSIMILE values of two networks with the ratio between
their (1) number of nodes, (2) number of edges, (3) average
clustering coefficients of the nodes, (4) average degree, (5)
maximum degree, and (6) network clustering coefficient. In
all of them, we saw no correlation. For brevity, we only show
the scatterplot for the NETSIMILE values and the ratio between
the number of nodes of the two networks (see Figure 5(a)) and
the scatterplot for the NETSIMILE values and the ratio between
the average clustering coefficients of the nodes of the two
networks (see Figure 5(b)). As evident in these scatterplots,
NETSIMILE’s results are not merely reflecting the difference
in sizes of the networks. If they were, we would expect to
observe correlations among the points in each scatterplot. This
implies that we can generate two networks of the same kind,
with different sizes (e.g., two Forest-Fire networks [10] with
different node sizes) and NETSIMILE would find them similar.

F. Scalability

Table II reports the run times (in seconds) of NETSIMILE
and the two baselines (FSM and EIG) applied to our real
networks. Note that for NETSIMILE the run times refer to all
the three steps described in Section II, with the comparison
step constituted by the pairwise computation of both the
Cosine Similarity and the Canberra Distance. For FSM we
do not report running time longer than two days. NETSIMILE
and EIG are able to compare graphs in a few of seconds,
though EIG produces results that are size-dependent. FSM
pays for its subgraph isomorphism, which considerably affects
the performances. Note that FSM is affected not only by the
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Fig. 5. NETSIMILE Canberra Distance is not measuring size, as there is no
clear evidence of correlation between the two axes.

size of the network, but also by its type. While DBLP is a set
of collaboration networks (with sparsely connected cliques),
the Oregon AS (being a technology network) is made of one
single connected component, thus the cost for the isomorphism
is much higher.

G. Applications

NETSIMILE can be used in numerous applications such
measuring node overlap, classifying/labeling networks, and
discontinuity detection. Due to brevity, we discuss two of them.

NETSIMILE as a Measure of Node-Overlap. Given three
graphs GA, GB , and GC of the same domain (e.g., co-
authorship networks in SIGMOD, VLDB and ICDE), can we
use only their NETSIMILE’s “signature” vectors to gauge the
amount of node-overlap between them? Our hypothesis is
that if graph GA is more similar to graph GB than graph
GC , then GA will have more overlap in terms of nodes with
GB than GC . To test this hypothesis, we ran NETSIMILE
with Canberra Distance on our real networks. Figure 6(a)
depicts the scatterplot of NETSIMILE results on graphs within
each comparable group (i.e., arXiv, DBLP-C, DBLP-Y, IMDb,
Query Log, and Oregon AS graphs). The y-axis is the nor-
malized node overlap and is equal to |VGA

∩VGB
|√

|VGA
|×|VGB

|
. As the



Network |V| |E| NETSIMILE FSM EIG
ar

X
iv

a-AstroPh 18,772 396,160 9 > 2 days 6
a-CondMat 23,133 186,936 2 > 2 days 4

a-GrQc 5,242 28,980 1 > 2 days 1
a-HepPh 12,008 237,010 6 > 2 days 3
a-HepTh 9,877 51,971 1 > 2 days 2

D
B

L
P-

C

d-vldb 1,306 3,224 1 15 1
d-sigmod 1,545 4,191 1 28 1
d-cikm 2,367 4,388 1 11 1

d-sigkdd 1,529 3,158 1 42 1
d-icdm 1,651 2,883 1 17 1
d-sdm 915 1,501 1 7 1

D
B

L
P-

Y

d-05 39,357 79,114 1 2231 2
d-06 44,982 94,274 1 2856 2
d-07 47,465 103,957 1 4603 2
d-08 47,350 107,643 1 9859 3
d-09 45,173 102,072 1 9209 2

IM
D

b

i-05 13,805 130,295 1 > 2 days 3
i-06 14,228 142,955 1 > 2 days 3
i-07 13,989 133,930 1 > 2 days 2
i-08 14,055 132,007 1 > 2 days 3
i-09 14,372 128,926 1 > 2 days 2

O
re

go
n

A
S o-1 10,900 31,181 2 > 2 days 1

o-2 11,019 31,762 2 > 2 days 1
o-3 11,113 31,435 2 > 2 days 1
o-4 11,260 31,304 2 > 2 days 1
o-5 11,461 32,731 2 > 2 days 1

Q
ue

ry
L

og

ql-1 138,976 1,102,606 209 > 2 days 14
ql-2 108,420 876,517 119 > 2 days 11
ql-3 89,406 707,579 107 > 2 days 9
ql-4 75,838 582,703 68 > 2 days 8
ql-5 42,946 253,469 11 > 2 days 5

TABLE II. RUN TIMES (IN SECONDS, UNLESS OTHERWISE NOTED) OF
NETSIMILE, FSM, AND EIG ON OUR REAL NETWORKS

figure shows the lower the NETSIMILE Canberra Distance,
the higher the normalized node intersection. This confirms our
hypothesis that NETSIMILE can be used to gauge node-overlap
between two graphs without node correspondence information.
Figure 6(b) shows the same scatter plot, but computed using
the EIG Canberra Distance approach. In this case, there is no
correlation between node overlap and the distance. Due to its
scalability issues, the FSM approach could not be computed
on all the networks in Figure 6.

NETSIMILE as a Discontinuity Detector. Given a time-
series of graphs {G1, G2, .., Gt}, can NETSIMILE detect any
discontinuity (i.e. temporal outliers) in the data? To answer
this, we utilize NETSIMILE Canberra Distance to compute the
difference between graphs in a time series. For this experiment,
we used data from Yahoo! IM and Twitter. For brevity, we only
show the Yahoo! IM results; the other results were comparable.

The Yahoo! IM communications dataset (http://sandbox.
yahoo.com) spans 28 days and starts on Tuesday April 1,
2008. Each graph is a collection of instant messages (IMs)
per day, with nodes representing IM users and links denot-
ing communication events. The graphs are of varying sizes:
number of nodes from 29K to 100K and number of edges
from 80K to 280K. We computed the NETSIMILE normalized
Canberra Distance between Day 0 (April 1, 2008) and the
other 27 days. Figure 7(a) shows our results, with the x-
axis representing days and the y-axis representing NETSIMILE
(with normalized Canberra Distance) between Day 0 and the
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Fig. 6. [Ideal: lines with negative slope.] (a) NETSIMILE Canberra Distance
on DBLP, IMDb, Oregon and QueryLog. (b) EIG Canberra Distance on the
same networks. NETSIMILE is an effective measure for node overlap without
any node-correspondence information. The lower the NETSIMILE Canberra
Distance, the higher the normalized node intersection. This correlation does
not hold for EIG. The points in both plots are along the fitted lines. For
NETSIMILE (a), the root mean square (RMS) of residuals are 6.5E−2 for
DBLP-C, 2.6E−2 for DBLP-Y, 9.0E−3 for IMDb, 1.4E−2 for Oregon AS,
and 6.5E−2 for Query Log. For EIG (b), the RMS of residuals are 8.2E−2
for DBLP-C, 4.2E−2 for DBLP-Y, 1.3E−3 for IMDb, 1.2E−2 for Oregon
AS, and 6.7E−2 for Query Log.

other 27 days. Figure 7(b) shows NETSIMILE (with normalized
Canberra Distance) between Day 8 (April 9, 2008) and all
the other days. As the figures illustrate, NETSIMILE detects
the weekday vs. weekend discontinuities. It also detects a
discontinuity on Wednesday April 9, 2008. The following event
explains this discontinuity. Flickr announced that it will add
video to its popular photo-sharing community4 on April 8,
2008; but its news spread on April 9, 2008.5 This event is
reflected in the graph for April 9, 2008, where the number
of connected components decreases by 4× as the news about
Flickr spreads among the IM users.

IV. RELATED WORK

Assessing the similarity between two “objects” comes up
in numerous settings, and so there exist similarity measures
for various domains: distributions or multi-dimensional points
[15], datacubes [16], and graphs, such as social [17], [18],
information [19], and biological networks [20]. One aspect
that separates NETSIMILE from most previous works (e.g.
on graph isomorphism and graph matching) is that NET-
SIMILE does not require node correspondences nor does it
attempt to match the graphs. A recent work, DELTACON
[21] solves a much more restricted problem than NetSimile

4http://yhoo.client.shareholder.com/releasedetail.cfm?releaseid=303857
5http://searchengineland.com/

flickr-launches-video-its-not-a-youtube-clone-13727
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Fig. 7. NETSIMILE detects discontinuities in time-evolving graphs, and
also captures weekly periodicities. (a) Distance of day 1, day 2, · · · , day
27 IM graphs from day 0 (Tuesday April 1, 2008) IM graph. Weekdays are
distinguished from weekends (yellow line= Saturday, blue line = Sunday).
The peak on the 2nd Wednesday (April, 9, 2008) corresponds to a big Flicker
announcement and a Microsoft offer to buy Yahoo!. (b) Distance of the other
days from day 8 (April 9, 2008) IM graph. All the other days are distant from
April 9, 2008.

since it assumes that the correspondences between the nodes
of the networks are given (e.g., temporal who-emails-whom
graph in a company). DELTACON uses belief propagation to
measure network similarity. W.r.t. feature extraction, some of
the features that have previously been used for network simi-
larity are: frequent subgraphs [13], [22] and socially relevant
features [18], [17]. Henderson et al. [6] propose a method
for mining recursive structural features. NETSIMILE is easily
extensible to incorporate these features. Li et al. [23] propose
a classification approach of attributed graphs, which is based
on global feature extraction. The weakness of that approach
is that some features (e.g., eccentricity and shortest paths) are
computationally expensive, and, thus, it is not scalable on large
graphs. Also, the method is domain-specific and focuses on
databases of graphs, such as chemical compounds, while our
work is not domain-specific. NETSIMILE focuses on the ex-
traction and aggregation of computationally inexpensive, local
features supported by pertinent social theories that capture the
nuances in the structural information of the given networks
without assuming node-correspondences.

V. CONCLUSIONS

We introduced NETSIMILE, a novel, effective, size-
independent, and scalable method for comparing large net-
works. NETSIMILE has three components: (1) feature extrac-
tion supported by relevant social theories, (2) feature aggre-

gation, and (3) comparison. The heart of our contribution is
in the first two components, where we discovered that (1)
extracting structural features of the nodes and their egonets
based on theories of Social Capital, Structural Hole, Balance,
and Social Exchange, and (2) computing the moments of
distributions of these structural features provides an excellent
“signature” vector for a network. Through extensive empirical
studies, we demonstrated that these “signature” vectors can
be used to effectively and quickly assess the similarity of two
or more networks without node-correspondence information or
assumptions on node or edge overlaps.
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