Minimum Congestion Mapping in a Cloud

Nikhil Bansal, Kang-Won Lee, Viswanath Nagarajan, and Murtaza Zafer
IBM T.J. Watson Research Center
{nikhil, kangwon, viswanath, mzafer}@us.ibm.com

ABSTRACT

We study a basic resource allocation problem that arises in cloud computing environments. The physical network of the cloud is represented as a graph with vertices denoting servers and edges corresponding to communication links. A workload is a set of processes with processing requirements and mutual communication requirements. The workloads arrive and depart over time, and the resource allocator must map each workload upon arrival to the physical network. We consider the objective of minimizing the congestion.

We show that solving a subproblem (SingleMap) about mapping a single workload to the physical graph essentially suffices to solve the general problem. In particular, an α-approximation for SingleMap gives an O(α log nD) competitive algorithm for the general problem, where n is the number of nodes in the physical network and D is the maximum to minimum workload duration ratio.

We also show how to solve SingleMap for two natural class of workloads, namely depth-d trees and complete-graph workloads. For depth-d tree, we give an nO(d) time O(d^2 log(nd))-approximation based on a strong LP relaxation inspired by the Schrader-Adams hierarchy.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity; C.2.5 [Computer Systems Organization]: Computer-Communication Networks

General Terms
Algorithms, Theory

Keywords
Cloud Computing, Graph Mapping, Congestion Minimization, Approximation Algorithms

1. INTRODUCTION

In cloud computing, the underlying resource is a physical network (also called the substrate) consisting of servers that are inter-connected via communication links. Each server has a processing capacity and each communication link has a bandwidth capacity. Workloads are service demands made to the cloud, modeled as a graph with a set of processes with communication requirements between them. Each workload must be assigned/mapped to some physical resources. The goal of the cloud service provider is to allocate resources to workloads in the best possible way.

The allocation of a workload to the substrate can be viewed as mapping one graph into another. This consists of two aspects: (a) node-mapping, the assignment of processes to servers, and (b) path-mapping, the assignment of each communication request (i.e. edge between two processes) to a path in the substrate between the respective servers. The load on a substrate node (resp. edge) is the total demand using that node (resp. edge). Ideally, one would like that the mapping should not cause the load on any node or edge to exceed it capacity. However if this constraint is enforced strictly, the problem can be shown hard to approximate to within any reasonable factor. This holds even for simple workloads such as stars for trivial reasons (in particular, due to NP-hardness of the Partition problem). So, we relax this requirement and consider the natural and well-studied objective of minimizing the maximum node and edge congestion, where the congestion of node or edge is defined as the ratio of its load to capacity.

We will refer to our problem as GraphMap and the objective as network congestion. There are two natural variants of

\footnote{Our results extend easily to settings with multiple resources such as CPU, memory, disk etc. However, for notational clarity, we only consider the single resource case here, and defer the generalization to the full version of this paper.}
GraphMap: In the offline case, the workloads are all known in advance. In the (harder) online case, the workloads arrive and depart over time, and the existence of a workload is unknown until it arrives. Here we seek an online algorithm that assigns each workload (immediately upon its arrival) to the substrate such that the worst case network congestion over time is minimized. Many previous papers [24, 23, 11, 18] have proposed heuristics to solve such mapping problems, but without any performance guarantees. In this paper we design algorithms with provable guarantees.

Interestingly, even the (seemingly simple) problem of mapping a single workload to the substrate is quite hard in general. For example, several classic and well-studied problems are simple special cases of mapping a single workload:

• **Balanced Separator.** The substrate is a single edge with each node having capacity \(n/2 \). This reduces to partitioning the vertices of the workload \(H \) into near-balanced parts such that the resulting cut is minimized. This is an extensively studied graph partitioning problem, and the best known approximation ratio is \(O(\sqrt{\log n}) \) [2].

• **Cut-width.** The substrate is a line on \(n \) vertices with equal capacity edges. This reduces to finding an ordering \(v_1, \ldots, v_n \) of the vertices in the workload \(H \) such that \(\delta_H(v_1, \ldots, v_k) \) is minimized. The best known approximation ratio is \(O(\log^{3/2} n) \) [16].

• **Min-max \(k \)-partitioning.** The substrate is a star with \(k \) leaves and equal capacity edges; the node capacity of the center is zero and each leaf has capacity \(n/k \). This reduces to partitioning the vertices of the workload \(H \) into \(k \) nearly balanced parts \(V_1, \ldots, V_k \) such that \(\delta_H(V_i) \) is minimized, a basic problem in distributed computing.

One of our main results will be that the problem of mapping a *single workload* to the substrate essentially captures the hardness of the online GraphMap problem. More precisely, a cost-aware variant of the single workload mapping problem, that we call **SingleMap**, suffices to solve both the offline and online GraphMap problem. In addition to this connection, clearly SingleMap is a natural assignment problem on graphs, applicable in a wider context.

As the SingleMap problem (and hence GraphMap) appears very challenging in full generality, we obtain results for the following natural subclasses of workloads that seem to arise most often in practice:

• **Constant depth trees.**

• **Complete graphs** with uniform demands.

Tree-shaped workloads arise commonly as they corresponding to processes arranged hierarchically. The constant depth corresponds to having a small number of hierarchies. The complete graph workloads represent a clique of processes all of them communicating with each other. We require that the processing requirements be identical and also the communication requirement be identical for every pair of processes.

1.1 Model

The General Mapping Problem: The substrate is a graph \(G = (V,E) \) with edge-capacities \(c : E \rightarrow \mathbb{R}^+ \) and node-capacities \(u : V \rightarrow \mathbb{R}_+ \). There is a set of workloads that need to be mapped into the substrate. Each workload is a virtual graph \(H = (W,F) \) with processing demands \(g : W \rightarrow \mathbb{R}_+ \) and traffic demands \(b : F \rightarrow \mathbb{R}_+ \). A mapping of \(H \) to the substrate \(G \) is specified by a tuple \((\pi,\sigma)\), where:

- \(\pi : W \rightarrow V \) assigns each process \(w \in W \) to some node \(\pi(w) \in V \) in the substrate \(G \).
- \(\sigma : F \rightarrow 2^E \) maps each edge \(f = (w_1,w_2) \in F \) to a path \(\sigma(f) \) in \(G \) between nodes \(\pi(w_1) \) and \(\pi(w_2) \); the \(b(f) \) units of traffic between processes \(w_1 \) and \(w_2 \) are routed along \(\sigma(f) \). This is an unsplitable routing model. An alternate model is splittable routing, where \(\sigma(f) \) can be a flow of \(b(f) \) units between \(\pi(w_1) \) and \(\pi(w_2) \).

For each edge \(e \in E \) in the physical network let \(L_e \) denote the total traffic (from all workloads) routed through edge \(e \); then the congestion of edge \(e \) is \(L_e/c_e \). Similarly, for a node \(v \in V \) let \(N_v \) denote the total processing demands assigned to \(v \); and congestion of \(v \) is \(N_v/u_v \). We define the network-congestion to be the maximum of the edge and node congestions.

Given a set of workloads and the substrate graph, the objective in the GraphMap problem is to map all workloads so as to minimize the network-congestion. We give algorithms for both offline and online settings. In the offline setting, the algorithm knows all the workloads in advance before computing the mapping. The more realistic online setting is when workloads arrive (and depart) over time, and the algorithm has to make irrevocable assignments to the workloads upon their arrival. We consider the model of known durations (see eg. [4]), i.e. each workload specifies upon arrival the time it will spend in the cloud.

Single Workload Mapping: This is an important subroutine that is useful in obtaining algorithms for both the offline and online mapping problems. The input to SingleMap consists of the following:

- A workload represented by an undirected graph \(G = (W,F) \) with demands \(g : W \rightarrow \mathbb{R}_+ \) and \(b : F \rightarrow \mathbb{R}_+ \).
- Substrate \(G = (V,E) \) with edge-capacities \(c : E \rightarrow \mathbb{R}_+ \) and node-capacities \(u : V \rightarrow \mathbb{R}_+ \).
- Cost functions \(\alpha : E \rightarrow \mathbb{R}_+ \) and \(\beta : V \rightarrow \mathbb{R}_+ \).

A mapping of \(H \) into \(G \) assigns vertices \(W \) to \(V \) and each edge in \(F \) to a path in \(G \) between the respective end-points (as in the definition of GraphMap). The mapping is called valid if it respects all edge and node capacities, i.e. \(L_e \leq c_e \forall e \in E \) and \(N_v \leq u_v \forall v \in V \). The goal is to find a valid mapping of \(H \) into \(G \) that minimizes the total cost \(\sum_{e \in E} \alpha_e \cdot L_e + \sum_{v \in V} \beta_e \cdot N_v \).

An algorithm for SingleMap is said to be a \((\rho_1,\rho_2)\) bicriteria approximation algorithm if: (1) it produces a solution of cost at most \(\rho_1 \) times the optimum, and (2) such that all edge and node capacities are satisfied within a \(\rho_2 \) factor.

We note that the objective in SingleMap is not congestion (as in GraphMap), but the cost of the mapping.

1.2 Our Results and Techniques

First, we describe the general frameworks for designing both offline and online algorithms of GraphMap, assuming

\(^2 \) Such a restriction is necessary, as any arbitrary workload \(H \) can be modeled as a complete graph with zero requirement for edges not in \(H \).
For offline GraphMap (where all workloads are given upfront) we show an $O((p_1 + p_2) \cdot (\log n / \log \log n))$ approximation algorithm. To obtain this result, we formulate a configuration LP relaxation for GraphMap, and solve it approximately using SingleMap as the dual separation routine. The final solution is obtained by applying randomized rounding to the approximate LP solution.

For online GraphMap we give an $O((p_1 + p_2) \cdot \log(nD))$-competitive algorithm, where D is the ratio of maximum to minimum durations. This result uses multiplicative updates and builds upon the ideas developed previously in the context of online virtual circuit routing [3].

These results appear in Section 2 and Section 3 respectively. An immediate consequence of this framework is that there is a logarithmic approximation for GraphMap on constant-sized workloads. This follows as the SingleMap problem can be (trivially) solved optimally by enumerating all possibilities for such workloads.

Next, we consider SingleMap for arbitrary sized workloads for the cases of constant depth trees and uniform complete graphs. The following theorem is proved in Section 4.

Theorem 1.1. There is a randomized $(2, O(d^2 \cdot \log nd))$ bicriteria approximation algorithm for SingleMap on d-depth tree workloads, that runs in time $\kappa(d)$. Here n is the number of vertices in the substrate.

This implies a polynomial time $O(\log n)$-approximation algorithm for SingleMap when $d = O(1)$, and a quasipolynomial, poly-logarithmic approximation when d is polylogarithmic in n. This result is based on a strong LP relaxation, which is inspired by the Sherali-Adams lift-and-project procedure. It is easy to show that direct LP relaxations [11, 18] with just assignment variables have very large integrality gaps even when the workload is a single edge. The main idea in our LP is to use joint assignment variables with d-tuples and ‘conditional congestion’ constraints. The rounding algorithm uses the tree structure of the workload and proceeds in d iterations, each time assigning vertices of a new level via randomized rounding. For complete graph workloads, the idea is to solve the problem on a tree substrate and then use Räcke decomposition [20, 14]. However some more care is required in this reduction since the Räcke tree only provides a splittable routing, and we finally want an unsplittable routing.

Theorem 1.2. For GraphMap under uniform complete-graph workloads there is:

- An offline $O(\log^3 n)$-approximation algorithm.
- An $O(\log^2 n \log \log n \log(nR))$-competitive randomized online algorithm.

Here n is the number of vertices in the substrate and R is the time horizon of the online algorithm.

1.3 Related Work

Our graph mapping problem (GraphMap) has two aspects. First, how the vertices of the workload H should be mapped. Second, given a mapping of the vertices of H, how to map the edges. Both these issues have been studied separately in previous works. In particular, the Quadratic Assignment problem [8] is related to the first issue and the goal there is to find mapping nodes of one graph into another such that a certain quadratic objective is minimized [15] or maximized [19, 17]. On the other hand, the virtual circuit routing problem [3] deals with the second issue (although only for single edge workloads). Here, the mapping of the endpoints of the workload edge are given, and the goal is to map the edge to a path in the substrate graph to minimize edge congestion.

Another related problem is minimizing congestion for quorum placement on networks [13], for which a poly-logarithmic approximation is known. This also involves mapping nodes and paths simultaneously (here routing is splittable). However all paths are between one vertex that is fixed (called client) and another (called quorum) that is mapped. In contrast, both end points of a path in SingleMap are mapped vertices. Moreover, the demand between clients and quorums has a “product multicommodity” structure, whereas demands in SingleMap are arbitrary.

The online framework we present for GraphMap uses ideas from the online virtual circuit routing algorithm [3]. In [3] costs on edges are maintained using multiplicative updates and each request is routed along a shortest-path from its source to destination. Our framework is a generalization of this result, where requests have more complicated mappings (instead of just a path). Consequently, the subproblem (SingleMap) that we need to solve is also harder, as opposed to shortest-path in [3].

A natural approach to mapping nodes in SingleMap is to consider an LP relaxation similar to ones used for quadratic assignment [1, 17]. However, as we show in Section 4, such LPs have a large integrality gap for SingleMap. Instead, our result for d-depth tree workloads uses substantially stronger LPs based on the Sherali-Adams hierarchy [22]. We are not aware of a more direct approach that yields a poly-logarithmic approximation for this problem. This adds to a small list of problems for which lift-and-project LP hierarchies have proved useful in obtaining algorithms. Some other examples are graph coloring [9], independent set in 3-uniform hypergraphs [10], dense-k-subgraph [6], and max-min degree arborescence [5].

If we consider splittable routing in the GraphMap problem then one can assume (at the loss of a poly-logarithmic approximation factor) that the substrate is always a tree [20, 14]. Although we are interested in unsplittable routing, this connection is useful in our algorithm for complete-graph workloads.

2. Offline Framework

We show the following result.

Theorem 2.1. For any $p_1, p_2 \geq 1$, a (p_1, p_2) bicriteria approximation algorithm for the SingleMap problem can be used to obtain an $O((p_1 + p_2) \cdot \log n / \log \log n)$ approximation algorithm for the offline GraphMap problem.

The main idea is to solve a configuration LP relaxation for GraphMap, and then apply randomized rounding. The separation oracle for this LP will be the SingleMap problem.

Let H_1, \ldots, H_k denote the workloads to be mapped into substrate $G = (V, E)$ with edge capacities c_e and node capacities u_v. Without loss of generality we assume that the
optimum congestion is 1 (the algorithm can do a binary search on the value of the optimum congestion, and scale the capacities accordingly). For each $i \in [k]$ let \mathcal{F}_i denote the set of all possible valid mappings of H_i into G, such that the load on each edge e (resp. vertex v) is at most c_e (resp. u_v). We define a variable $x_i(\tau)$ for each possible map $\tau \in \mathcal{F}_i$ for H_i. As the optimal solution must use some map from \mathcal{F}_i for each H_i and has overall congestion 1, the following LP is a valid relaxation of GraphMap and has a feasible solution.

$$\min \quad 0$$
$$s.t. \quad \sum_{\tau \in \mathcal{F}_i} x_i(\tau) \geq 1 \quad \forall i \in [k]$$
$$\sum_{i=1}^k \sum_{\tau \in \mathcal{F}_i} \ell(e, \tau) \cdot x_i(\tau) \leq c_e \quad \forall e \in E$$
$$\sum_{i=1}^k \sum_{\tau \in \mathcal{F}_i} \ell(v, \tau) \cdot x_i(\tau) \leq u_v \quad \forall v \in V$$
$$x_i(\tau) \geq 0 \quad \forall \tau \in \mathcal{F}_i, \forall i \in [k].$$

Here, for any $i \in [k]$ and $\tau \in \mathcal{F}_i$, $\ell(e, \tau)$ denotes the load on edge e in E under mapping τ; similarly $\ell(v, \tau)$ denotes the load on vertex $v \in V$.

This LP has an exponential number of variables but only polynomially many constraints, so we consider its dual:

$$\max \quad \sum_{i=1}^k z_i - \sum_{e \in E} c_e \cdot x_i(c_e) - \sum_{v \in V} u_v \cdot \beta_v$$
$$s.t. \quad \sum_{e \in E} \ell(e, \tau) \cdot x_i(c_e) + \sum_{v \in V} \ell(v, \tau) \cdot \beta_v \geq z_i \quad \forall \tau \in \mathcal{F}_i, i \in [k]$$
$$z_i, x_i(c_e), \beta_v \geq 0 \quad \forall i \in [k], e \in E, v \in V$$

Observe that given values for (z, α, β) the dual problem is precisely SingleMap for each of $\{H_i\}^k_{i=1}$ with capacities c, u and costs α, β. Since we have a (ρ_1, ρ_2) bicriteria approximation algorithm for SingleMap, we can solve the dual LP approximately using the Ellipsoid algorithm. By standard LP duality arguments, this gives a primal solution $(y_i(\tau) : i \in [k], \tau \in \mathcal{F}_i)$ where:

- For each map in \mathcal{F}_i, the load on each edge e (resp. vertex v) is at most $\rho_2 \cdot c_e$ (resp. $\rho_2 \cdot u_v$).
- For all $e \in E$, $\sum_{i=1}^k \sum_{\tau \in \mathcal{F}_i} \ell(e, \tau) \cdot y_i(\tau) \leq \rho_1 \cdot c_e$.
- For all $v \in V$, $\sum_{i=1}^k \sum_{\tau \in \mathcal{F}_i} \ell(v, \tau) \cdot y_i(\tau) \leq \rho_1 \cdot u_v$.
- Each \mathcal{F}_i has polynomial size.

Given a primal solution with these properties, the algorithm now chooses a mapping for each workload H_i by picking $\tau_i \in \mathcal{F}_i$ independently with probability $y_i(\tau)$. Using standard probabilistic tail bounds (as in [21]), it follows that the total load on any edge or vertex is $O((\rho_1 + \rho_2) \cdot (\log n / \log \log n))$ times its capacity with high probability, which implies the result.

3. ONLINE FRAMEWORK

In this section we show the following result:

Theorem 3.1. Given a (ρ_1, ρ_2) bicriteria approximation algorithm for SingleMap, there is an $O((\rho_2 + \rho_1) \log(nD))$-competitive online algorithm for GraphMap with known durations. Here n is the number of vertices in the substrate graph and D is the maximum duration of any workload.

Using standard arguments the term D above can be replaced with the ratio of maximum to minimum durations, however we defer this technicality to the full version of the paper.

The algorithm is similar to the online algorithm for virtual circuit routing [3, 4, 7]. The idea is that at each time, the algorithm maintains a cost on the edges that is an exponentially increasing function of their load. Upon the arrival of a workload, the solution of an SingleMap instance with these costs determines where this workload will be placed. Since the highly loaded edges are severely penalized, the SingleMap solution will prefer edges with low load.

Notation: Let H_1, H_2, \ldots, H_k denote the workloads in the order in which they arrive; we use i to index the workloads. Each H_i appears at time s_i with a specified duration δ_i, which means that H_i stays in the cloud from time s_i to $s_i + \delta_i$. We assume that the duration δ_i becomes known when H_i arrives at s_i. Note that the δ_is are non-decreasing. We assume that all times and durations are integral and max, $\delta_i \leq D$. Also, given SingleMap as a black-box, our algorithm for GraphMap will treat edges and vertices identically, and hence we will use the term element to refer to either an edge or a vertex of G. The set of elements will be denoted by U and c_e will denote the capacity of $e \in U$. For each workload H_i, the algorithm finds a map $\tau_i \in \mathcal{F}_i$ and H_i is assigned to G using this map during the interval $[s_i, s_i + \delta_i]$. The network congestion is the maximum congestion over all elements $e \in U$ and over all times h, i.e.

$$\max_{e \in U} \max_{h \in \mathbb{Z}^+} \sum_{i=1}^{s_i + \delta_i} \tau_i(e) / c_e,$$

where $\tau_i(e)$ is the load on e due to map τ_i for workload H_i.

The SingleMap problem can be restated in the above notation: given workload H_i, costs $\alpha : U \to \mathbb{R}_+$ and capacities $c : U \to \mathbb{R}_+$, find a feasible map $\tau \in \mathcal{F}_i$ minimizing $\sum_{e \in U} c_e \cdot \tau(e)$ such that $\tau(e) \leq c_e$ for all $e \in U$. As previously, we assume a (ρ_1, ρ_2) bicriteria approximation algorithm for SingleMap.

3.1 Algorithm

In the description below we assume that optimum solution has congestion at most 1. This assumption can be removed by standard doubling techniques (see eg. Theorem 12.5 [7]), where the online maintains an upper bound A on the optimum congestion thus far.

Let $\gamma \in (0, 1)$ be a constant to be fixed later. Also let $B := \rho_2$. For any $i \geq 1$, let $\ell_i(e, h)$ denote the load of element e at time h, induced by requests H_1, \ldots, H_{i-1}. Formally,

$$\ell_i(e, h) = \sum_{j=1}^{s_{i-1}} \tau_i(e) \cdot \|h \in [s_j, s_j + \delta_j]\|$$

where $\|h \in [s_j, s_j + \delta_j]\|$ is an indicator 0-1 variable representing whether $s_j \leq h \leq s_j + \delta_j$.

Upon the arrival of workload H_i at time s_i, the algorithm does the following:

1. Set costs $\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\alpha \cdot \ell_i(e, h) \cdot \exp(\gamma \cdot \alpha \cdot \ell_i(e, h) / B \cdot c_e)$ for all $e \in U$.

2. Run the (ρ_1, ρ_2) bicriteria approximation algorithm for SingleMap on instance (H_i, α, c) to obtain $\tau_i \in \mathcal{F}_i$, and assign workload H_i according to τ_i during the time interval $[s_i, s_i + \delta_i]$.

3. Update $\ell_{i+1}(e, h) := \ell_i(e, h) + \tau_i(e)$ for all $e \in U$ and $s_i \leq h \leq s_i + \delta_i$.

Note that the above updates to the variables ℓ are consistent with their definition.
3.2 Analysis

We will show that this algorithm is $O((p_1 + p_2) \log(D|U|))$-competitive. We begin with a simple claim.

Claim 3.1. For any $\tau \in F_i$ with $\tau(e) \leq B \cdot c_e$ for all $e \in U$, we have:

$$\sum_{e \in U} \sum_{h=s_i}^{s_{i+1}} \exp\left(\gamma \cdot \ell_i(e, h) \cdot \frac{B \cdot c_e}{\rho_2} \right) \leq \sum_{e \in U} \sum_{h=(j-2)D}^{(j-1)D} \exp\left(\gamma \cdot \frac{\tilde{t}(e, h)}{B \cdot c_e} \right) + 2D$$

lies in the range $[\sum_{e \in U} \alpha_e \cdot \gamma, 2 \sum_{e \in U} \alpha_e \cdot \gamma(e)]$.

Proof: For all $x \in [0, 1]$ and $\gamma \in (0, 1)$ we have $\exp(\gamma x) - 1 \in [\gamma x, 2\gamma x]$. Consider any $e \in U$. As $\tau(e) \in [0, B \cdot c_e]$, setting $x = \tau(e)/(B \cdot c_e)$ above,

$$\exp\left(\gamma \cdot \frac{\tau(e)}{B \cdot c_e} \right) - 1 \in \left[\gamma \cdot \frac{\tau(e)}{B \cdot c_e}, 2 \gamma \cdot \frac{\tau(e)}{B \cdot c_e} \right].$$

The claim now follows by the definition of costs $\alpha_e = \frac{\gamma}{B \cdot c_e}$.

For each $e \in U$ and time $h \geq 0$, let $\ell_i(e, h) = \tilde{\ell}(e, h)$ denote the observed load on element e at time h. Observe that for any index i with $s_i > h$, we have $\ell_i(e, h) = \tilde{\ell}(e, h)$. Clearly, the objective value of the online algorithm is $\max_{c_e \geq 0} \tilde{\ell}(e, h)/c_e$, that we wish to bound. To this end, for any integer $j \geq 1$ define:

$$L_j = \sum_{e \in U} \sum_{h=(j-1)D}^{jD} \exp\left(\gamma \cdot \frac{\tilde{t}(e, h)}{B \cdot c_e} \right)$$

We will now show that,

Lemma 3.1. Setting $\gamma := \min\{\frac{\rho_2}{B \cdot c_e}, 1\},$ for each $j \geq 1$, we have $L_j \leq 6 \cdot D \cdot |U|$.

Before we prove Lemma 3.1, we note that this already implies our main result, Theorem 3.1. In particular, for all $e \in U$ and $h \geq 0$, taking logarithms,

$$\tilde{t}(e, h) \leq \frac{1}{\gamma} \ln(6D|U|) \cdot B \cdot c_e \leq \rho_2 \ln(6D|U|) \cdot B \cdot c_e \leq \max\{\rho_2, 6p_1\} \ln(6D|U|) c_e$$

by the definition of γ.

Proof: (Lemma 3.1) The proof is by induction on j. Define $L_0 = 0$ for the base case. Consider now any $j \geq 1$, assuming inductively that $L_{j-1} \leq 6 \cdot D \cdot |U|$. Let $R = \{r, r+1, \ldots, t\}$ denote the indices of workloads that are released in the interval $[(j-2)D, jD]$. For any index $i \in R$, define

$$A_i = \sum_{e \in U} \sum_{h=(j-2)D}^{(j-1)D} \exp\left(\gamma \cdot \frac{\ell_i(e, h)}{B \cdot c_e} \right).$$

Claim 3.2. $A_r \leq 2D|U| + L_{j-1}$.

Proof: By the choice of R, $s_{r-1} < (j-2)D$. As D is the maximum duration, $s_{r+1} + t_{r-1} < (j-1)D$ and hence $\ell_i(e, h) = 0$ for all $e \in U$ and $h \geq (j-1)D$. Thus,

$$A_r = \sum_{e \in U} \left(\sum_{h=(j-2)D}^{(j-1)D} \exp\left(\gamma \cdot \frac{\ell_i(e, h)}{B \cdot c_e} \right) + \sum_{h=(j-1)D}^{(j+1)D} \exp(0)\right)$$

For convenience, for any $i \in R$, $e \in U$ and $h \geq 0$, let us define $\tau^*(e, h) = \tau_i(e)$ if $s_i \leq h \leq s_i + t_i$, and 0 otherwise. Also define $\tau_i(e, h)$ similarly.

Claim 3.3. For any $i \in R$, we have

$$A_{i+1} - A_i \leq 2p_1 \gamma \sum_{e \in U} \sum_{h=(j-2)D}^{(j-1)D} \exp\left(\gamma \cdot \frac{\tilde{t}(e, h)}{B \cdot c_e} \right) \cdot \tau^*(e, h) \cdot B \cdot c_e \cdot \mathbb{1}_{\max\{\rho_2, 6p_1\} \ln(6D|U|) c_e \geq 0}.$$

Proof: By definition, $A_{i+1} - A_i = \sum_{e \in U} \sum_{h=(j-2)D}^{(j+1)D} \exp\left(\gamma \cdot \frac{\tau_i(e, h)}{B \cdot c_e} \right) \cdot \tau^*(e, h) \cdot B \cdot c_e \cdot \mathbb{1}_{\max\{\rho_2, 6p_1\} \ln(6D|U|) c_e \geq 0}$.

Since $\tau_i(e, h) \leq \tau_i(h) \leq B \cdot c_e$, we can use (see Claim 3.1) $\exp\left(\gamma \cdot \frac{\tilde{t}(e, h)}{B \cdot c_e} \right) - 1 \leq 2\gamma \cdot \frac{\tilde{t}(e, h)}{B \cdot c_e}$, and hence $A_{i+1} - A_i$ is at most:

$$\sum_{e \in U} \sum_{h=(j-2)D}^{(j+1)D} \exp\left(\gamma \cdot \frac{\ell_i(e, h)}{B \cdot c_e} \right) \cdot \tau^*(e, h) \cdot B \cdot c_e \cdot \mathbb{1}_{\max\{\rho_2, 6p_1\} \ln(6D|U|) c_e \geq 0}$$

The first equality is by definition of $\tau_i(e, h)$ and the second is by the definition of α_e. Now, recall the algorithm for mapping workload H_i that solves SingleMap instance $\langle H_i, \alpha, c \rangle$. As τ^* is also a candidate feasible solution to this instance and τ_i is a (p_1, p_2)-approximate solution to this SingleMap instance, we have:

$$\sum_{e \in U} \alpha_e \cdot \tau_i(e) \leq p_1 \sum_{e \in U} \alpha_e \cdot \tau^*(e).$$

Moreover, since $\ell_i(e, h) \leq \tilde{\ell}(e, h)$ and $(j-2)D \leq s_i \leq s_i + t_i \leq (j-1)D$ we have:

$$\alpha_e \leq \gamma \cdot \sum_{h=(j-2)D}^{(j-1)D} \exp\left(\gamma \cdot \frac{\tilde{t}(e, h)}{B \cdot c_e} \right) \cdot \mathbb{1}_{\max\{\rho_2, 6p_1\} \ln(6D|U|) c_e \geq 0} \cdot \gamma \cdot \frac{\tilde{t}(e, h)}{B \cdot c_e} \cdot \mathbb{1}_{\max\{\rho_2, 6p_1\} \ln(6D|U|) c_e \geq 0}$$

Combined with (1) and (2), we obtain $A_{i+1} - A_i$:

$$\sum_{e \in U} \sum_{h=(j-2)D}^{(j+1)D} \exp\left(\gamma \cdot \frac{\tilde{t}(e, h)}{B \cdot c_e} \right) \cdot \tau^*(e, h) \cdot B \cdot c_e \cdot \mathbb{1}_{\max\{\rho_2, 6p_1\} \ln(6D|U|) c_e \geq 0}$$

which proves the claim.
The second inequality uses $B = \rho_2$ and our assumption that the optimum congestion is at most 1, i.e. $\sum_i \tau_i^* (e, h) \leq c_e$. As $\gamma := \min \{ \frac{2}{\rho_2}, 1 \}$, this gives that

$$A_{t+1} - A_t \leq \frac{2\rho\gamma}{\rho_2} \cdot A_t \leq \frac{1}{3} A_{t+1},$$

which implies that $A_{t+1} \leq 1.5 \cdot A_t$. Together with Claim 3.2, this implies that

$$A_{t+1} \leq 3D |U| + 1.5 L_{j-1}.$$

On the other hand, $A_{t+1} \geq L_{j-1} + L_j$. This follows because, by definition of R, workload $t+1$ arrives after time jD, i.e. $s_{t+1} > jD$ and so for all $e \in U$ and $h \leq jD$, we have $\ell_{t+1} (e, h) = \ell (e, h)$. Thus, $L_{j-1} + L_j \leq A_{t+1} \leq 3D |U| + 1.5 \cdot L_{j-1}$, and hence

$$L_j \leq 3D |U| + \frac{L_{j-1}}{2}.$$

As $L_{j-1} \leq 6D |U|$ by the inductive hypothesis, this proves Lemma 3.1.

4. SINGLE WORKLOAD MAPPING ON d-DEPTH TREE WORKLOADS

In this section we prove Theorem 1.1. As mentioned previously, our result in based on an LP formulation inspired by the Sherali-Adams Hierarchy. It is instructive to see why simpler approaches do not seem to work. Clearly, an LP formulation based on assignment variables $x_{p,v}$ which indicate that node p in mapped to vertex v, is very weak, as it cannot capture the pairwise traffic constraints. However, it turns out that even a quadratic assignment type LP with variables $x_{p,v} \cdot p_i$ (representing whether p_i mapped to v, and p_j mapped to v_j) is also very weak, unless strengthened by additional Sherali-Adams type constraints.

In particular, consider a star workload with center r and n leaves ℓ_1, \ldots, ℓ_n with unit traffic and processing demands. The substrate consists of n disjoint edges $\{(a_i, b_i)\}_{i=1}^n$ each of capacity one; each vertex also has capacity one. All costs are zero; so this is a feasibility question.

Clearly, any integral mapping must violate the capacity of some edge by a factor of n. However, it turns out that is a feasible solution for Quadratic Assignment LPs [1], that satisfies all the capacities. We set,

$$g(r, v) = \begin{cases} \frac{1}{n} & \text{if } v \in \{a_i\}_{i=1}^n \\ 0 & \text{otherwise} \end{cases}$$

For each $i, j \in [n]$ we have

$$g(r, a_i, \ell_j, v) = \begin{cases} \frac{1}{n} & \text{if } v = b_i \\ 0 & \text{otherwise} \end{cases}$$

Basically this solution is a convex combination of the n integral solutions, where for each $i \in [n]$, r maps to a_i and all the leaves $\{\ell_j\}_{j=1}^n$ map to b_i. This LP solution is feasible as the total usage of each edge $\{(a_i, b_i)\}_{i=1}^n$ is one; so edge capacities are satisfied. Similarly the total usage of each vertex is also at most one.

The trouble with this LP is that it fails to capture the fact that when the center is mapped to some vertex s, the traffic from all leaves must come to s. To get around this problem, we will add additional constraints that we call conditional congestion constraints. Roughly speaking, they ensure that conditional on the center being mapped to some vertex s, the total congestion induced by all edges remains at most one. These are formally described later.

Before describing our LP based algorithm for d-level tree workloads, we describe a simpler combinatorial algorithm for star workloads with uniform demands. This is useful as such workloads are likely to appear frequently in practice and combinatorial algorithms are simpler to implement than LP based approaches. Also, this algorithm explicitly illustrates the problem with the LP described above, and motivates the Sherali-Adams approach better. Interestingly, we do not know how to extend this combinatorial algorithm to trees with depth two or more.

4.1 Uniform Star Workload

Let ℓ denote the number of edges in the star workload and $b \in \mathbb{R}_+$ the demand on each edge.

The Algorithm: For each vertex $s \in V$, we do the following: Define a flow network N_s on G with s as source and a new sink vertex t that is connected to all vertices V. Set the capacity of each edge $e \in E$ to be c_e / b: the capacity of each edge (u, t) to be u (for $v \in V \setminus \{t\}$) and capacity of (s, t) to u $- 1$. There is a cost of α_e on each edge $e \in E$, and cost of β_i for each edge (e, t).

The network flow instance on N_s involves computing the minimum cost flow of ℓ units from s to t, which can be done efficiently [12]. Observe that there is a one-to-one correspondence between feasible solutions to this flow instance N_s and valid mappings of the star-workload where the center is mapped to s. Note that having fixed the center at s, the flow instance N_s captures both node and path mappings. Thus the minimum cost optimum amongst instances $\{N_s: s \in V\}$ yields an optimal solution to SingleMap on uniform star workloads.

The main idea in the above algorithm was to enumerate over the mapping of the center (s), which enabled a reduction to a single commodity flow. This approach can be extended to workloads with a constant number of non-leaf vertices, since we can again enumerate over all non-leaves and reduce to single commodity flow. However extending this idea to even a 2-level tree workload appears problematic since we can no longer perform such an enumeration (there may be super-logarithmic number of non-leaf vertices).

4.2 Depth d-tree Workload

Notation. We fix some notation relevant to this section. We use $H = (W, F)$ to denote the workload which is a tree of depth d rooted at some node r. The level of a vertex $v \in W$ is the number of edges on the path from v to root r, so the root has level zero. We use $[d] := \{0, 1, \ldots, d\}$. For any $i \in [d]$, we use p_i to refer to some node at level i (p_0 is always the root r). An edge (p_i, p_{i+1}) has demand $b(p_i, p_{i+1})$, and a node p has processing demand $g(p)$. The substrate is a graph $G(V, E)$ with edge and vertex capacities c_e and w_v. The costs of the edges and vertices are $\{\alpha_e\}_{e \in E}$ and $\{\beta_i\}_{i \in V}$. For any $i \in [d]$, we use p_0, p_1, \ldots, p_i to denote a path in H from the root p_0 that contains exactly one vertex in each level $0, 1, \ldots, i$.

The LP relaxation We describe here the LP relaxation. First, we describe the variables we use. There will be two types of variables, that we call assignment variables, and flow variables.
Assignment Variables: For every index $i \in [d]$, and path (p_0, p_1, \ldots, p_i) in H, and vertices $v_0, \ldots, v_i \in V$, we introduce a variable $y(p_0, v_0, \ldots, p_i, v_i) \in \{0, 1\}$ which we relax to take values in the range $[0, 1]$. In the integral solution, this variable is intended to be 1, if each p_j in the path is mapped to v_j for each $j \in \{0, \ldots, i\}$, and is 0 otherwise. It is convenient to view this variable as the probability of the event $\bigwedge_{j=0}^{i} (p_j \text{ is mapped to } v_j)$. Also, we only allow variables where each p is mapped v such that $g(p) \leq u_v$ (we set the y variable to 0 otherwise).

Flow Variables: For every path (p_0, p_1, \ldots, p_i) in H with $i \geq 1$ and collection of vertices $v_0, \ldots, v_i \in V$, we define a network flow instance. This instance will be denoted by $F(p_0, v_0, \ldots, p_i, v_i)$, and is supposed to correspond to the mapping of edge (p_{i-1}, p_i) under the event that p_j is mapped to v_j for each $j \in \{0, \ldots, i\}$. We will denote the variables in this flow instance by $F_{\text{var}}(p_0, v_0, \ldots, p_i, v_i)$.

The underlying network $N(p_0, v_0, \ldots, p_i, v_i)$ in this flow instance is the substrate graph G restricted to edges of capacity at least $b(p_{i-1}, p_i)$, the source-vertex is v_{i-1} and sink is v_i. There are flow-variables $F_{\text{var}}(p_0, v_0, \ldots, p_i, v_i)$ for each edge $e \in G$. The flow on edges $G/N(p_0, v_0, \ldots, p_i, v_i)$ are fixed to zero; i.e. only edges $N(p_0, v_0, \ldots, p_i, v_i)$ participate in this flow. The variables satisfy flow-conservation and send

$$y(p_0, v_0, \ldots, p_{i-1}, v_{i-1}, p_i, v_i) \cdot b(p_{i-1}, p_i)$$

units of flow from v_{i-1} to v_i. One can view $\{F_{\text{var}}(p_0, v_0, \ldots, p_i, v_i)\}_{e \in e}$ as defining $b(p_{i-1}, p_i)$ units of flow conditioned upon p_j being mapped to v_j for each $j \in \{0, \ldots, i\}$. We note that the network $N(p_0, v_0, \ldots, p_i, v_i)$ itself is independent of where p_0, \ldots, p_2 are mapped.

We impose three types of constraints.

Consistency Constraints: Since we intend the y variables to model probabilities, we impose the following natural consistency constraints.

1. For all paths (p_0, p_1, \ldots, p_i) in H and $v_0, \ldots, v_{i-1} \in V$,

$$\sum y(p_0, v_0, \ldots, p_i, v_i) = y(p_0, v_0, \ldots, p_{i-1}, v_{i-1}).$$

This can be viewed as saying that

$$\frac{y(p_0, v_0, \ldots, p_{i-1}, v_{i-1}, p_i, v_i)}{y(p_0, v_0, \ldots, p_{i-1}, v_{i-1})}$$

defines valid probability distribution for mapping p_i to v_i conditional upon p_0, \ldots, p_{i-1} being mapped to v_0, \ldots, v_{i-1}.

2. As the root must be assigned somewhere, we have:

$$\sum_{v_0 \in V} y(p_0, v_0) = 1. \tag{5}$$

Together (4) and (5) imply that every path (p_0, p_1, \ldots, p_i) in H is mapped somewhere, i.e.

$$\sum_{v_0, v_1 \in V} y(p_0, v_0, \ldots, p_i, v_i) = 1.$$

Global Congestion Constraints: These ensure that the load of any edge or vertex in G is at most its capacity.

For each edge $e \in E$, we have

$$\sum_{(p_{i-1}, p_i) \in F} V_{\text{var}}(p_0, v_0, \ldots, p_i \ldots, v_i \ldots, p_0, v_0) \leq c_e. \tag{6}$$

Note that the left hand side is precisely the total fractional load on edge e due to pairs (p_{i-1}, p_i) in the workload.

Similarly, for each vertex $v \in V$, we have

$$\sum_{(p_0, p_i) \in V} V_{\text{var}}(p_0, v_0, \ldots, p_i \ldots, v_i \ldots, p_0, v_0) \leq u_v, \tag{7}$$

where the summation is over all indices $i \geq 0$, and paths $(p_0, p_i) \in H$ and vertices $v_0, \ldots, v_1 \in V$.

Conditional Congestion Constraints: These final types of constraints are perhaps the least natural, but these are critical to strengthening the LP.

For each index $i \geq 0$, and each path (p_0, \ldots, p_i) and each possible choice of vertices $v_0, \ldots, v_i \in V$, and edge $e \in E$, we add the constraint:

$$\sum_{j \geq i} \sum_{p_{i+1}, v_{i+1}, \ldots, p_j, v_j} V_{\text{var}}(p_0, v_0, \ldots, p_i, v_i, \ldots, p_j, v_j) \leq c_e \cdot y(p_0, v_0, \ldots, p_i, v_i). \tag{8}$$

This constraint is similar to global edge congestion constraint, except that we condition on event that p_0, \ldots, p_i are mapped to v_0, \ldots, v_i respectively. That is, conditional on p_0, \ldots, p_i being mapped to v_0, \ldots, v_i, the total load on e due to mapping edges in subtree rooted at p_i must be no more than c_e. Note that if $y(p_0, v_0, \ldots, p_i, v_i) \in \{0, 1\}$, then this is a valid constraint, and hence the above relaxation is valid.

Similarly, for each vertex $v \in V$, index $i \geq 0$, each path (p_0, \ldots, p_i) and vertices $v_0, \ldots, v_i \in V$, we add:

$$\sum_{(p_0, p_i) \in V} \sum_{v_0, v_i, \ldots, v_{i-1}} V_{\text{var}}(p_0, v_0, \ldots, p_i, v_i, \ldots, p_0, v_0) \leq u_v \cdot y(p_0, v_0, \ldots, p_i, v_i). \tag{9}$$

That is, conditional on p_0, \ldots, p_i being mapped to v_0, \ldots, v_i, the load on v due to nodes in subtree rooted at p_i must be no more than u_v.

Objective: The objective is to minimize:

$$\sum_{e \in E} \alpha_e \cdot F_{\text{var}}(p_0, v_0, \ldots, p_i, v_i, \ldots, p_0, v_0)$$

$$+ \sum_{v \in V} \beta_v \cdot \sum_{p_0, p_i} y(p_0, v_0, \ldots, p_i, v_i, \ldots, p_0, v_0). \tag{10}$$

Here, the first summation (over edges) is over all indices $i \geq 1$, all paths (p_0, \ldots, p_i) in H and all vertices $v_0, \ldots, v_i \in V$, and the second summation (for vertices) is over all indices $i \geq 0$, all paths (p_0, \ldots, p_i) and all vertices $v_0, \ldots, v_1 \in V$.

This completes the description of the linear program. Observe that the total number of variables and constraints is $n^{O(d)}$ which is polynomial for constant d. Hence this LP can be solved exactly in $n^{O(d)}$ time. Moreover, as argued above, this LP is a valid relaxation of the SingleMap problem with d-depth tree workloads.

4.3 The Rounding Algorithm

We round the optimal LP solution in d phases, where in the i^{th} phase we fix the mapping of all level-i vertices in H.

Vertex Mapping: The algorithm incrementally constructs a mapping $\tau : W \rightarrow V$ as follows.
1. Set $\tau(p_0) \leftarrow v$ with probability $y(p_0, v)$. This fixes the mapping of the root.

2. For each $i \in \{1, \ldots, d\}$ do:
 For each vertex p_i at level-i:
 - Let $(p_0, \ldots, p_{i-1}, p_i)$ denote the path from the root to p_i.
 - Set $\tau(p_i) \leftarrow v$ independently with probability:
 \[
 \frac{y(p_0, \tau(p_0), \ldots, p_{i-1}, \tau(p_{i-1}), p_i, v)}{y(p_0, \tau(p_0), \ldots, p_{i-1}, \tau(p_{i-1}))} \tag{11}
 \]
 Note that the algorithm is well-defined as at any iteration i, the map τ is already known for all vertices at levels up to $i - 1$. Also, (11) defines a valid (conditional) probability distribution for mapping p_i, due to LP constraint (4).

 \textbf{Edge Mapping:} Having obtained the vertex mapping τ above, the map σ from edges of H to paths in G is constructed by randomized rounding. For each edge (p_{i-1}, p_i) in H do:
 - Obtain a flow-path decomposition of
 \[
 \mathcal{F}(p_0, \tau(p_0), \ldots, p_{i-1}, \tau(p_{i-1}), p_i, \tau(p_i))
 \]
 \[
 \cdot \frac{b(p_{i-1}, p_i) \cdot y(p_0, \tau(p_0), \ldots, p_{i-1}, \tau(p_{i-1}), p_i, \tau(p_i))}{b(p_{i-1}, p_i) \cdot y(p_0, \tau(p_0), \ldots, p_{i-1}, \tau(p_{i-1}))}
 \]
 By (3) this gives a probability distribution on $\tau(p_{i-1})$ to $\tau(p_i)$ paths.
 - Assign edge (p_{i-1}, p_i) to a random $\tau(p_{i-1})$ to $\tau(p_i)$ path chosen according to the above distribution; call this path $\sigma(p_{i-1}, p_i)$ and send $b(p_{i-1}, p_i)$ units of flow along $\sigma(p_{i-1}, p_i)$.

 \textbf{Two simple properties:} This completes the description of the rounding procedure. We note here two useful properties of this procedure.

 1. For any path $(p_0, \ldots, p_i) \in H$, vertices $v_0, \ldots, v_i \in V$,
 \[
 \Pr[\tau(p_0) = v_0, \ldots, \tau(p_i) = v_i] = y(p_0, v_0, \ldots, v_i).
 \]
 2. Similarly, for any edge $e \in E$, edge $(p_{i-1}, p_i) \in F$ with (p_0, \ldots, p_i) being its path from r and $v_0, \ldots, v_i \in V$,
 \[
 \Pr[e \in \sigma(p_{i-1}, p_i) | \tau(p_0) = v_0, \ldots, \tau(p_i) = v_i] = \mathcal{F}_e(p_0, v_0, \ldots, p_{i-1}, v_i, p_i, v_i) \cdot \frac{y(p_0, v_0, \ldots, p_{i-1}, v_i, p_i, v_i)}{b(p_{i-1}, p_i)} \tag{12}\]

4.4 The Analysis

We need to show two things. First, the cost of the mapping is close to optimum. Second, the edge and node congestions are not too high.

\textbf{Claim 4.1.} The expected cost of the algorithm’s mapping (τ, σ) equals the optimal LP objective.

This claim along with Markov inequality implies that with probability at least half, the cost of (τ, σ) is at most twice the LP optimum.

\textbf{Proof:} (Claim 4.1) The cost of any mapping (τ, σ) is
\[
\sum_{p \in W} \beta_\tau(p) \cdot g(p) + \sum_{(p, q) \in E} \sum_{e \in \sigma(p, q)} \alpha_e \cdot b(p, q),
\]
given by the total of node costs and edge costs.

For any level i node p_i with $(p_0, \ldots, p_{i-1}, p_i)$ as its path from the root, and vertices $v_0, \ldots, v_i \in V$, recall that our rounding procedure satisfies
\[
\Pr[\tau(p_0) = v_0, \ldots, \tau(p_i) = v_i] = y(p_0, v_0, \ldots, p_i, v_i).
\]
So, $\Pr[\tau(p_i) = v_i] = \sum_{v_0, \ldots, v_i-1} y(p_0, v_0, \ldots, p_{i-1}, v_i-1, p_i, v_i)$ and hence the expected node-cost of mapping (τ, σ):
\[
\sum_{p_i \in W} \sum_{v} \beta_\tau(p) \cdot g(p) \cdot \Pr[\tau(p) = v] = \sum_{v} \sum_{p_i \in W} \sum_{v_0, \ldots, v_i-1} y(p_0, v_0, \ldots, p_{i-1}, v_i-1, p_i, v_i).
\]
which is exactly the second term in the LP objective (10).

We now compute the expected edge-cost. Consider any edge $(p_{i-1}, p_i) \in F$. By (12), and unconditioning over the events $\tau(p_0) = v_0, \ldots, \tau(p_{i-1}) = v_{i-1}, \tau(p_i) = v_i$,
\[
\Pr[\sigma(p_{i-1}, p_i) \ni e] = \sum_{v_0, \ldots, v_i} \mathcal{F}_e(p_0, v_0, \ldots, p_{i-1}, v_i-1, p_i, v_i) \cdot \frac{b(p_{i-1}, p_i)}{b(p_{i-1}, p_i)}.
\]
So the expected edge-cost is:
\[
\sum_{(p_{i-1}, p_i) \in F} b(p_{i-1}, p_i) \cdot \alpha_e \cdot \Pr[\sigma(p_{i-1}, p_i) \ni e] = \sum_{e \in E} \sum_{(p_{i-1}, p_i) \in F} \sum_{v_0, \ldots, v_i} \mathcal{F}_e(p_0, v_0, \ldots, p_{i-1}, v_i-1, p_i, v_i)
\]
which is exactly the first term in the LP objective (10). This implies the claim.

\textbf{Bounding edge and node congestion:} We now bound the edge and node congestion of the mapping produced by our algorithm.

\textbf{Theorem 4.1.} With probability at least $1 - 1/n^2$, the maximum node or edge congestion is at most $O(d^2 \log(nd))$.

We describe here the analysis for edge congestion, the analysis for node congestion is essentially identical.

Fix an edge $e \in E$ in the substructure. For each level i edge $(p_{i-1}, p_i) \in F$ in the workload, the load assigned by the LP solution to e is
\[
\sum_{v_0, \ldots, v_i} \mathcal{F}_e(p_0, v_0, \ldots, p_{i-1}, v_i-1, p_i, v_i).
\]
We will be interested in how this load evolves as the rounding proceeds on each level of nodes in W.

For $\ell \in [d]$, let $\tau^{(\ell)}$ denote some mapping of the first $\ell - 1$ levels of nodes in W. So, $\tau^{(0)}$ denotes the empty mapping and $\tau^{(d+1)}$ denote a mapping of all the vertices. Let us define $L_e(\tau^{(\ell)}, p_{i-1}, p_i)$ as the load on e due to edge (p_{i-1}, p_i) based on the mapping $\tau^{(\ell)}$ thus far. Formally, we define $L_e(\tau^{(\ell)}, p_{i-1}, p_i)$ as follows: if $\ell \geq i + 1$ then
\[
\frac{\mathcal{F}_e(p_0, \tau^{(\ell)}(p_0), \ldots, p_{i-1}, \tau^{(\ell)}(p_{i-1}), p_i, \tau^{(\ell)}(p_i))}{y(p_0, \tau^{(\ell)}(p_0), \ldots, p_i, \tau^{(\ell)}(p_i))},
\]
and otherwise (i.e. $\ell \leq i$),
\[
\sum_{v_0, \ldots, v_i} \mathcal{F}_e(p_0, \tau^{(\ell)}(p_0), \ldots, p_{i-1}, \tau^{(\ell)}(p_{i-1}), p_i, v_i) \mathcal{F}_e(p_0, v_0, \ldots, p_{i-1}, \tau^{(\ell)}(p_{i-1})) \cdot \frac{y(p_0, \tau^{(\ell)}(p_0), \ldots, p_{i-1}, \tau^{(\ell)}(p_{i-1}))}{y(p_0, \tau^{(\ell)}(p_0), \ldots, p_{i-1}, \tau^{(\ell)}(p_{i-1}))}.
\]
We note that by conditional congestion constraints (8), $L_e(\tau^{(\ell)}, p_{i-1}, p_i)$ is well-defined and always bounded by c_e.

A crucial observation is the following.
Lemma 4.1. Let $\tau^{(0)}$ be any arbitrary mapping on the first $\ell - 1$ levels. Let $\tau^{(\ell+1)}$ be obtained from $\tau^{(0)}$ by applying our rounding procedure to level ℓ nodes. Then, For any substrate edge $e \in E$ and workload edge $(p_{i-1}, p_i) \in F$,

$$E[L_e(\tau^{(\ell+1)}, p_{i-1}, p_i)] = L_e(\tau^{(\ell)}, p_{i-1}, p_i)$$

where expectation is taken over the randomness in the rounding procedure applied to level ℓ nodes.

Proof: Firstly, if $\ell > i$, then the mapping of p_{i-1} and p_i are already fixed in $\tau^{(\ell)}$ and the lemma is trivially true, so we assume that $\ell \leq i$.

Let p_i denote the level-ℓ edge on the path from p_0 to p_i. By the rounding procedure, the probability that p_i is mapped to v conditioned on the mapping $\tau^{(\ell)}$ until level $\ell - 1$, is $Pr[\tau^{(\ell+1)}(p_i) = v | \tau^{(\ell)}]$

$$= \frac{g(p_0, \tau^{(0)}), \ldots, p_{i-1}, \tau^{(0)}(p_{i-1}), p_i, v}{g(p_0, \tau^{(0)}), \ldots, p_{i-1}, \tau^{(0)}(p_{i-1})}$$

Thus,

$$E[L_e(\tau^{(\ell+1)}, p_{i-1}, p_i)] = \sum_{v \in V} Pr[\tau^{(\ell+1)}(p_i) = v | \tau^{(\ell)}] \cdot L_e(\tau^{(\ell+1)}, p_{i-1}, p_i)$$

$$= L_e(\tau^{(\ell)}, p_{i-1}, p_i)$$

which is the equality in the last step follows by (13) and the definition of L_e (in the regime $\ell \leq i$).

Given a partial mapping $\tau^{(\ell)}$ (of nodes on first $\ell - 1$ levels), let $L_e(\tau^{(\ell)}, p_{i-1}, p_i)$ denote total load on edge $e \in E$ to all edges in F. Call $\tau^{(\ell)}$ good if $L_e \leq 16d(\ell + 1)c_e log nd$. Clearly, the empty mapping $\tau^{(0)}$ is good, since

$$L_e(\tau^{(0)}) = \sum_{(p_{i-1}, p_i) \in F} \sum_{v_0, \ldots, v_i} F_e(p_0, v_0, \ldots, p_i, v_i)$$

which by the global congestion constraint in the LP (6) is at most c_e.

Lemma 4.2. For any $\ell \in [d]$,

$$Pr[\tau^{(\ell+1)} \text{ is good } | \tau^{(\ell)} \text{ is good }] \geq 1 - 1/(dn)^4$$

Proof: Let E'' denote the edges of H induced on the vertices of the first $\ell - 1$ levels. For any vertex p_i in level ℓ (with $p_0, \ldots, p_{i-1}, p_i$ being its path from the root), let $E'(p_i)$ denote the set of edges in the subtree rooted at p_i plus the edge (p_{i-1}, p_i). For any subset S of edges, define $L_e(\tau^{(\ell)}, S) = \sum_{(p_{i-1}, p_i) \in S} L_e(\tau^{(\ell)}, p_{i-1}, p_i)$; and $L_e(\tau^{(\ell)}, S)$ is defined similarly. Since E'' and $(E'(p_i))$ partition edges of H,

$$L_e(\tau^{(\ell)}) = L_e(\tau^{(\ell)}, E'') + \sum_{p_i} L_e(\tau^{(\ell+1)}, E'(p_i))$$

and a similar equality holds for $L_e(\tau^{(\ell+1)})$. Recall that $\tau^{(\ell)}$ is a fixed mapping for levels until $\ell - 1$. The randomness is in the choice of mapping for level-ℓ vertices, which gives $\tau^{(\ell+1)}$. So $L_e(\tau^{(\ell+1)}, E'') = L_e(\tau^{(\ell)}, E'')$ is a deterministic quantity.

Note also that each $L_e(\tau^{(\ell+1)}, E'(p_i))$ depends only on the choice $\tau^{(\ell+1)}(p_i)$, i.e., $L_e(\tau^{(\ell+1)}, E'(p_i))$s are independent random variables. Moreover, by Lemma 4.1, the expectation $E[L_e(\tau^{(\ell+1)}, E'(p_i))] = L_e(\tau^{(\ell+1)}, E'(p_i))$ over the random choice of $\tau^{(\ell+1)}(p_i)$ as in (13). Finally, by the conditional congestion LP constraints (8), it holds that for any choice of $\tau^{(\ell+1)}(p_i)$, $L_e(\tau^{(\ell+1)}, E'(p_i)) \leq c_e$.

Thus $L_e(\tau^{(\ell+1)}) - L_e(\tau^{(\ell)}, E'')$ is the sum of independent $[0, c_e]$ random variables having mean:

$$L_e(\tau^{(\ell)} - L_e(\tau^{(\ell)}, E'') \leq 16d(\ell + 1) log nd \cdot c_e - L_e(\tau^{(\ell)}, E'')$$

The inequality uses the fact that $\tau^{(\ell)}$ is good. By a Chernoff Bound (recall that $L_e(\tau^{(\ell)}, E'')$ is fixed),

$$Pr[L_e(\tau^{(\ell+1)}) > 16d(\ell + 2) log nd \cdot c_e] \leq \frac{1}{(dn)^4}$$

this uses the fact that $\ell \leq d$.

Applying lemma 4.2 inductively, it follows that the final mapping $\tau^{(d+1)}$ is good for edge e with probability at least $1 - (d + 1)/(nd)^4 > 1 - 1/(nd)^4$. Taking union bound over the possible n^2 edges implies Theorem 1.1.

5. **COMPLETE GRAPH WORKLOADS**

In this section we consider the GraphMap problem when the workloads are complete graphs with uniform processing and traffic demands, and the substrate is a general graph. We first present an algorithm for SingleMap where the substrate is a tree and the workload is a uniform complete graph. Later we show that the Räcke decomposition tree can be used to obtain results on general substrates. If only splittable routing is needed, the Räcke decomposition can be used directly; however we show that we can also obtain unsplittable routings with some more care. Using our general framework, this gives poly-logarithmic ratio offline and online algorithms for GraphMap. However, as Räcke decomposition is an intermediate step, we need some more care in the reduction to SingleMap. Due to lack of space we defer details of the online algorithm to the full version.

SingleMap on trees. By scaling edge capacities in the substrate graph, we can assume that the workload H is a complete graph K_d, with unit demand between every pair of vertices. The substrate graph is a tree $T = (V', E)$ with leaves $V \subseteq V'$, where processes can be mapped only to leaves. There are capacities $c : E \rightarrow \mathbb{R}_+$ on edges and $u : V \rightarrow \mathbb{R}_+$ on leaves. In addition there are cost functions $\alpha : E \rightarrow \mathbb{R}_+$ and $\beta : V \rightarrow \mathbb{R}_+$. Since the substrate is a tree, a mapping is already determined by an assignment of H-vertices to V. The goal is to find such an assignment satisfying node and edge capacities with minimum cost. We show now how this problem can be solved exactly by dynamic programming.

Since the workload is a complete graph with unit demands, the load on any edge $e \in T$ is determined by the number of H-vertices assigned to either side of e in the tree: if the two components in $T \setminus \{e\}$ contain ℓ and $r - \ell$ vertices from H then the load on e equals $\ell \cdot (r - \ell)$. Root the tree T at an arbitrary non-leaf vertex $s \in V' \setminus V$. By splitting high-degree vertices (introducing dummy vertices connected by edges of infinite capacity and zero cost), we can assume that each non-leaf vertex in T has at most two children (this makes the dynamic program simpler). For any $v \in V'$ let T_v denote the subtree of T rooted at vertex v. Define the following recurrence. For all leaves $v \in V$ and $0 \leq \ell \leq r$, set

$$D[v, \ell] = \begin{cases} \beta_v \cdot \ell & \text{if } \ell \leq u_v \\ \infty & \text{otherwise} \end{cases}$$
For any non-leaf vertex $v \in V$ with children v_1 and v_2, and $0 \leq \ell \leq r$, set

$$D[v, \ell] = \min D[v_1, \ell_1] + D[v_2, \ell_2] + \alpha(v, v_1) \cdot \ell_1 (r - \ell_1) + \alpha(v, v_2) \cdot \ell_2 (r - \ell_2)$$

where the minimum is over all $0 \leq \ell_1, \ell_2 \leq r$ such that $\ell_1 + \ell_2 = \ell$ and $\ell_1 (r - \ell_1) \leq c(v, v_1)$ and $\ell_2 (r - \ell_2) \leq c(v, v_2)$.

Above ℓ_1, ℓ_2 are the numbers of H-vertices in the subtrees T_{v_1} and T_{v_2}, $D[v, \ell]$ is obtained by enumerating over all possibilities (at most r^{2n}) for ℓ_1 and ℓ_2. The constraints on ℓ_1 and ℓ_2 ensure that the loads on edges (v, v_1) and (v, v_2) do not exceed their capacity. If there is no feasible solution $\{\ell_1, \ell_2\}$ then set $D[v, \ell] = \infty$. It is clear that using this recurrence, the value $D[s, r]$ at the root equals the optimum of the SingleMap instance.

Offline Algorithm. Here the substrate G is general, and workloads are complete graphs with unit demands. The algorithm guesses value $\Lambda \in [\text{Opt}, 2\text{Opt}]$ where Opt is the optimal value—we can try all possibilities. Then we apply the procedure of [14] to substrate G restricted to edges of capacity at least $1/\Lambda$, to obtain a Räcke decomposition tree $T(\Lambda)$. Note that the optimal solution uses only edges of capacity at least $1/\Lambda$ in G since $\text{Opt} \leq \Lambda$. The idea behind restricting edges is to ensure that the mapping obtained from the tree only uses high capacity edges of G. Now we consider the offline GraphMap instance on substrate $T(\Lambda)$, for which there is an $O\bigl(\frac{\log n}{\log \log n}\bigr)$-approximation algorithm using the SingleMap algorithm above within the offline framework (Appendix 2). By the property of Räcke tree $T(\Lambda)$ 3 and guess Λ, the optimal value of this tree instance is at most Λ. So we obtain a mapping on $T(\Lambda)$ having congestion $O\bigl(\frac{\log n}{\log \log n}\bigr) \cdot \Lambda$. Using the flow template [14] on $T(\Lambda)$, this yields a splittable-routing solution in G, where:

- The node congestion is $O\bigl(\frac{\log n}{\log \log n}\bigr) \cdot \Lambda$.
- The edge congestion is $O\bigl(\frac{\log^2 n \log \log n}{\log \log n}\bigr) \cdot \Lambda = O\bigl(\frac{\log n}{\log \log n}\bigr) \cdot \Lambda$.
- Every edge used in this solution has capacity $\geq \frac{1}{\Lambda}$, by definition of $T(\Lambda)$.

Note that in this solution, each demand edge e is mapped to a unit flow F_e between its end-points. The total usage of each edge $e' \in G$ is at most $O\bigl(\frac{\log^2 n}{\log \log n}\bigr) \Lambda \cdot c_{e'}$. Finally each demand edge e chooses one path between its end-points independently according to a flow-path decomposition of F_e. By a Chernoff bound, it follows that the final congestion is $O\bigl(\frac{\log^3 n}{\log \log n}\bigr) \cdot \Lambda$ with high probability.

6. REFERENCES

